Abstract

Wigner-Smith (WS) time delay concepts have been used extensively in quantum mechanics to characterize delays experienced by particles interacting with a potential well. This paper formally extends WS time delay theory to Maxwell's equations and explores its potential applications in electromagnetics. The WS time delay matrix relates a lossless and reciprocal system's scattering matrix to its frequency derivative and allows for the construction of modes that experience well-defined group delays when interacting with the system. The matrix' entries for guiding, scattering, and radiating systems are energy-like overlap integrals of the electric and/or magnetic fields that arise upon excitation of the system via its ports. The WS time delay matrix has numerous applications in electromagnetics, including the characterization of group delays in multiport systems, the description of electromagnetic fields in terms of elementary scattering processes, and the characterization of frequency sensitivities of fields and multiport antenna impedance matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.