Abstract

Wiener process with instantaneous reflection in narrow tubes of width $\epsilon\ll 1$ around axis $x$ is considered in this paper. The tube is assumed to be (asymptotically) non-smooth in the following sense. Let $V^{\epsilon}(x)$ be the volume of the cross-section of the tube. We assume that $\frac{1}{\epsilon}V^{\epsilon}(x)$ converges in an appropriate sense to a non-smooth function as $\epsilon\downarrow 0$. This limiting function can be composed by smooth functions, step functions and also the Dirac delta distribution. Under this assumption we prove that the $x$-component of the Wiener process converges weakly to a Markov process that behaves like a standard diffusion process away from the points of discontinuity and has to satisfy certain gluing conditions at the points of discontinuity.

Highlights

  • For each x ∈ and 0 < ε

  • Converges in an appropriate sense to a non-smooth function as ε ↓ 0. This limiting function can be composed by smooth functions, step functions and the Dirac delta distribution. Under this assumption we prove that the x-component of the Wiener process converges weakly to a Markov process that behaves like a standard diffusion process away from the points of discontinuity and has to satisfy certain gluing conditions at the points of discontinuity

  • For the convenience of the reader, we briefly recall the Feller characterization of all one-dimensional Markov processes, that are continuous with probability one

Read more

Summary

Introduction

For each x ∈ and 0 < ε

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.