Abstract

BackgroundIntra-articular glucocorticoid (GC) injections are widely used as a symptomatic treatment for osteoarthritis (OA). However, there are also concerns about their potentially harmful effects, and their detailed effects on chondrocyte phenotype remain poorly understood.MethodsWe studied the effects of dexamethasone on gene expression in OA chondrocytes with RNA-Seq. Chondrocytes were isolated from the cartilage from OA patients undergoing knee replacement surgery and cultured with or without dexamethasone for 24 h. Total RNA was isolated and sequenced, and functional analysis was performed against the Gene Ontology (GO) database. Results for selected genes were confirmed with RT-PCR. We also investigated genes linked to OA in recent genome-wide expression analysis (GWEA) studies.ResultsDexamethasone increased the expression of 480 and reduced that of 755 genes with a fold change (FC) 2.0 or greater. Several genes associated with inflammation and cartilage anabolism/catabolism as well as lipid and carbohydrate metabolism were among the most strongly affected genes. In the GO analysis, genes involved in the extracellular matrix organization, cell proliferation and adhesion, inflammation, and collagen synthesis were enriched among the significantly affected genes. In network analysis, NGF, PI3KR1, and VCAM1 were identified as central genes among those most strongly affected by dexamethasone.ConclusionsThis is the first study investigating the genome-wide effects of GCs on the gene expression in OA chondrocytes. In addition to clear anti-inflammatory and anticatabolic effects, GCs affect lipid and glucose metabolism in chondrocytes, an observation that might be particularly important in the metabolic phenotype of OA.

Highlights

  • Osteoarthritis (OA) is a disease that affects over 15% of the global population aged 60 or more, causing pain, disability, and reduced quality of life, as well as major costs to healthcare systems [1]

  • Expressed genes After normalization and correction for multiple testing, 480 genes were upregulated more than 2.0-fold in dexamethasone-treated cells compared to control cells, and 755 downregulated by the same factor (FC < − 2.0)

  • 7371 genes were found to be differentially expressed in dexamethasone-treated versus control cartilage in a statistically significant manner (FDR-corrected p value < 0.05)

Read more

Summary

Introduction

Osteoarthritis (OA) is a disease that affects over 15% of the global population aged 60 or more, causing pain, disability, and reduced quality of life, as well as major costs to healthcare systems [1]. The disease process in the joint is characterized by oxidative stress, low-grade inflammation, and increased catabolism. This eventually results in the breakdown of the articular cartilage and changes in other tissues of the joint, leading to pain and loss of function [2]. Chondrocyte gene expression is markedly altered in osteoarthritis [3]. Some of these changes are thought to be harmful (such as increased expression of proteolytic enzymes and proinflammatory cytokines) and some protective (e.g., increased expression of extracellular matrix [ECM] components) [4]. There are concerns about their potentially harmful effects, and their detailed effects on chondrocyte phenotype remain poorly understood

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call