Abstract

Chronic low-grade inflammation plays a central role in the pathogenesis of osteoarthritis (OA), and several pro- and anti-inflammatory cytokines have been implicated to mediate and regulate this process. Out of these cytokines, particularly IFNγ, IL-1β, IL-4 and IL-17 are associated with different phenotypes of T helper (TH) cells and macrophages, both examples of cells known for great phenotypic and functional heterogeneity. Chondrocytes also display various phenotypic changes during the course of arthritis. We set out to study the hypothesis of whether chondrocytes might adopt polarized phenotypes analogous to TH cells and macrophages. We studied the effects of IFNγ, IL-1β, IL-4 and IL-17 on gene expression in OA chondrocytes with RNA-Seq. Chondrocytes were harvested from the cartilage of OA patients undergoing knee replacement surgery and then cultured with or without the cytokines for 24 h. Total RNA was isolated and sequenced, and GO (Gene Ontology) functional analysis was performed. We also separately investigated genes linked to OA in recent genome wide expression analysis (GWEA) studies. The expression of more than 2800 genes was significantly altered in chondrocytes treated with IL-1β [in the C(IL-1β) phenotype] with a fold change (FC) > 2.5 in either direction. These included a large number of genes associated with inflammation, cartilage degradation and attenuation of metabolic signaling. The profile of genes differentially affected by IFNγ (the C(IFNγ) phenotype) was relatively distinct from that of the C(IL-1β) phenotype and included several genes associated with antigen processing and presentation. The IL-17-induced C(IL-17) phenotype was characterized by the induction of a more limited set of proinflammatory factors compared to C(IL-1β) cells. The C(IL-4) phenotype induced by IL-4 displayed a differential expression of a rather small set of genes compared with control, primarily those associated with TGFβ signaling and the regulation of inflammation. In conclusion, our results show that OA chondrocytes can adopt diverse phenotypes partly analogously to TH cells and macrophages. This phenotypic plasticity may play a role in the pathogenesis of arthritis and open new therapeutic avenues for the development of disease-modifying treatments for (osteo)arthritis.

Highlights

  • The IL-17-induced C(IL-17) phenotype was characterized by the induction of a more limited set of proinflammatory factors compared to C(IL-1β) cells

  • The C(IL-4) phenotype induced by IL-4 displayed a differential expression of a rather small set of genes compared with control, primarily those associated with TGFβ signaling and the regulation of inflammation

  • After normalization and correction for multiple testing, a total of 2822 genes were found to be differentially expressed in IL-1β-treated chondrocytes [in the C(IL-1β) phenotype] versus controls in a statistically significant manner (FDR-corrected p-value < 0.05)

Read more

Summary

Introduction

Osteoarthritis (OA) is the most common form of arthritis. It has been estimated to affect up to a half of the elderly population, and causes widespread disability and human suffering as well as an immense burden to healthcare systems [1]. Once thought as a mostly mechanical “wear and tear” disease, the chronic inflammatory component of osteoarthritis has been increasingly recognized during recent decades [2]. Constant lowgrade inflammation in the joint contributes to pain, oxidative stress, increased catabolism, and the eventual breakdown of articular cartilage [3,4]. No diseasemodifying pharmacological treatments are currently available for OA [5], demonstrating that our understanding of the pathogenesis of the disease remains limited

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.