Abstract

Since their initial development, semiconductor nanocrystals (NCs) and metal nanoparticles (NPs) have become widely utilized in a variety of applications, including solar energy harvesting, lighting, catalysis, biomedical imaging, and targeted cancer treatments. Because of their reduced dimensionality, NCs and NPs have vastly different optical and electronic properties than their bulk counterparts, and the properties often depend heavily on the NC or NP surface. Surface defects and ligands alter the optoelectronic properties of NCs and NPs and affect their interaction with the environment, allowing tailoring of their properties without changing the overall chemical composition. In this review, we discuss research progress focusing on optoelectronic properties of NPs and NCs and their respective applications. We highlight how different surface treatments and ligand functionalization of nanomaterials can influence these applications. Since their initial development, semiconductor nanocrystals (NCs) and metal nanoparticles (NPs) have become widely utilized in a variety of applications, including solar energy harvesting, lighting, catalysis, biomedical imaging, and targeted cancer treatments. Because of their reduced dimensionality, NCs and NPs have vastly different optical and electronic properties than their bulk counterparts, and the properties often depend heavily on the NC or NP surface. Surface defects and ligands alter the optoelectronic properties of NCs and NPs and affect their interaction with the environment, allowing tailoring of their properties without changing the overall chemical composition. In this review, we discuss research progress focusing on optoelectronic properties of NPs and NCs and their respective applications. We highlight how different surface treatments and ligand functionalization of nanomaterials can influence these applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call