Abstract
ObjectivesHepatitis C virus (HCV) disproportionately affects people who inject drugs (PWID) worldwide. Despite carrying a high HCV burden, little is known about transmission dynamics in low- and middle-income countries. MethodsWe recruited PWID from Nairobi and coastal cities and towns of Mombasa, Kilifi, and Malindi in Kenya at needle and syringe programs. Next-generation sequencing data from HCV hypervariable region 1 were analyzed using Global Hepatitis Outbreak and Surveillance Technology to identify transmission clusters. ResultsHCV strains belonged to genotype 1a (n = 64, 46.0%), 4a (n = 72, 51.8%) and mixed HCV/1a/4a (n = 3, 2.2%). HCV/1a was dominant (61.2%) in Nairobi, whereas HCV/4a was dominant in Malindi (85.7%) and Kilifi (60.9%), and both genotypes were evenly identified in Mombasa (45.3% for HCV/1a and 50.9% for HCV/4a). Global Hepatitis Outbreak and Surveillance Technology identified 11 transmission clusters involving 90 cases. Strains in the two largest clusters (n = 38 predominantly HCV/4a and n = 32 HCV/1a) were sampled from all four sites. ConclusionsTransmission clusters involving 64.7% of cases indicate an effective sampling of major HCV strains circulating among PWID. Large clusters involving 77.8% of clustered strains from Nairobi and Coast suggest successful introduction of two ancestral HCV/1a and HCV/4a strains to PWID and the existence of a widespread transmission network in the country. The disruption of this network is essential for HCV elimination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.