Abstract

Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments.

Highlights

  • Hydroelectric dams are rapidly emerging as the new villain in the myriad of anthropogenic threats to tropical forest biotas

  • nonmetric multidimensional scaling (NMDS) ordinations showed that vertebrate assemblage structure in large islands and continuous forest sites (CFs) were more similar to one another than that in smaller islands, with islands

  • Our study clearly demonstrates the colossal erosion in tropical forest vertebrate diversity induced by a major hydroelectric dam following a 26-year history of relaxation

Read more

Summary

Introduction

Hydroelectric dams are rapidly emerging as the new villain in the myriad of anthropogenic threats to tropical forest biotas. Dams displace indigenous communities [1], disrupt the natural flow of rivers [2], critically affect fish populations [3], release vast amounts of greenhouse gases [4], and promote wholesale deforestation and fragmentation of pristine forests [5]. From China to Brazil, hydroelectric dams have been built at an unprecedented scale to supply burgeoning energy demands [6]. More than 945,000 dams higher than 15 m have been built worldwide, altering >50% of all major rivers [7]. In South America alone, some 2,215 new hydroelectric dams are expected to be erected within the few years [8]. Assessing the true impacts of hydropower infrastructure on natural ecosystems has become an urgent priority for the environmental policy agenda of emergent economies

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.