Abstract

Local resonance band gaps in acoustic metamaterials are widely known for their strong attenuation yet narrow frequency span. The latter limits the practical ability to implement subwavelength band gaps for broadband attenuation and has motivated novel metamaterial designs in recent years. In this paper, we investigate the behavior of acoustic metamaterials where unit cells house multiple resonating elements stacked in different configurations, aimed at instigating a wide array of wave propagation profiles that are otherwise unattainable. The dispersion mechanics of the multi-resonator metamaterials are developed using purely analytical expressions which depict and explain the underlying dynamics of such systems both at the unit cell level as well as the frequency response of their finite realizations. The framework reveals the mechanism behind the transition of the lower and upper band gap bounds in metamaterials with parallel resonators resulting in a significant band gap widening. The analysis also illustrates the ability of metamaterials with dual-periodic super cells to exhibit a range of dispersion transitions culminating in collapsing solutions of acoustic and optical bands, enabling a coalescence of local resonance band gaps, vanishing resonances, and a number of intriguing scenarios in between.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.