Abstract
An approach is presented to form and broaden the low-frequency band gap of the double panel structure (DPS) by using a locally resonant sonic crystal (LRSC) in this work. The LRSC is made of cylindrical Helmholtz resonators arranged on square lattice. Their designs are similar to a slot-type resonator, but have different depths of slot. Elongating the slit neck inward and distributing the depths of slots produce a broad local resonant band gap at low frequencies: an average insertion loss (IL) of 10.9 dB covering 520 Hz to 1160 Hz with a LRSC of 12 cm width. Next, the effect of porous material filled into the resonators on the local resonant band gap is evaluated. It is shown that filling of porous material into the resonators decreases the height and width of the local resonant band gap. Finally, the transmission losses (TLs) through the DPS with LRSC are calculated as a function of the incident angle of the sound wave for LRSC embedded in porous material and not. The results show that the porous material can be significantly reduce the incident angle dependency of TL through the DPS with LRSC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.