Abstract

Two reaction systems based on vanadium nitrogenase were previously shown to reduce CO2 to hydrocarbons: 1) an enzyme-based system that used both components of V nitrogenase for ATP-dependent reduction of CO2 to ≤C2 hydrocarbons; and 2) a cofactor-based system that employed SmI2 to supply electrons to the isolated V cluster for an ATP-independent reduction of CO2 to ≤C3 hydrocarbons. Here, we report ATP-independent reduction of CO2 to hydrocarbons by a reaction system comprising Eu(II) DTPA and the VFe protein of V nitrogenase. Combining features of both enzyme- and cofactor-based systems, this system exhibits improved C-C coupling and a broader product profile of ≤C4 hydrocarbons. The C-C coupling does not employ CO2 -derived CO, and it is significantly enhanced in D2 O. These observations afford initial insights into the characteristics of this unique reaction and provide a potential template for future design of catalysts to recycle the greenhouse gas CO2 into useful products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call