Abstract

Fiber lasers, which use optical fibers as ideal waveguides, have been attracting a great deal of attention as stable, practical, and maintenance-free lasers. Using a combination of an ultrashort-pulse fiber laser and a nonlinear fiber, we can realize wideband highly functional ultrafast fiber laser sources. The generation of ultrashort pulses with wide wavelength tunability and supercontinua based on fiber lasers and nonlinear fibers has been demonstrated. These techniques are useful for laser applications, especially for imaging and metrology. In this topical review, the fundamentals of and recent progress in wideband ultrafast fiber laser sources and their applications are reviewed mainly based on the author’s work. First, a new pulse source based on a passively-mode-locked ultrashort-pulse fiber laser using carbon nanotubes is explained. Next, the development of wideband ultrafast fiber laser sources and their applications in ultrahigh-resolution optical coherence tomography, optical frequency combs, and nonlinear microscopy are reviewed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call