Abstract
Based on current traffic flow studies, there are several traffic cellular automaton (TCA) models, in which the wide scattering of flow-density data are observed. In this study, we propose that the physical mechanism behind the observed wide scattering is the variability of cluster formation in congested traffic. By simulating road bottlenecks on highways using the Nagel-Schreckenberg (NaSch) model, varying degrees of wide scattering is observed. Numerical analysis of the results shows a strong correlation between the variance in the number of clusters and the width of scattering in the flow-density data. By studying the microscopic dynamics of the NaSch model, we proposed the physical mechanism of wide scattering in TCA models to be the heterogeneity of cluster formation in congested traffic flow. In addition, the results were compared with Tian (2012)’s Average Space Gap Model (ASGM) and through qualitative analysis, we suggest that the wide scattering observed is due to the AGSM mechanism favouring statistically unfavourable cluster configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.