Abstract

Based on the Nagel–Schreckenberg (NaSch) model of traffic flow, a new cellular automaton (CA) traffic model is proposed to simulate microscopic traffic flow. The probability p is a variable which contains a randomly selected term for each individual driver and a density-dependent term which is the same for all drivers. When the rational probability p is obtained, the larger value of maximum flow which is close to the observed data can be reached compared with that obtained from the NaSch model. The fundamental diagram obtained by simulation shows the ability of this modified CA model to capture the essential features of traffic flow, e.g., the spontaneous formation of traffic jams and appearance of the metastable state. These indicate that the presented model is more reasonable and realistic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.