Abstract
A ZrN contact on a Ge substrate can alleviate the intrinsic Fermi-level pinning (FLP) position toward conduction band edge, which is induced by an amorphous interlayer (a-IL) containing nitrogen atoms at the interfaces. Since the a-IL could be retained on the Ge surface, we demonstrated a wide range Schottky barrier height (SBH) control for metal/a-IL/Ge contacts. The sputtering power for ZrN affects the SBH, pinning factor (S), and effective charge neutral level. A high S value of 0.26 was achieved, which is comparable to that of metal/Si contacts. A model was proposed for explaining the mechanism of this effective FLP alleviation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.