Abstract
TiN/Ge contacts, prepared by direct sputter deposition from a TiN target, can alleviate the intrinsic Fermi-level pinning (FLP) position toward the conduction band edge. This work focuses on studying the origin of the FLP alleviation. Investigations on both the electrical properties and interfacial structures of TiN/Ge contacts showed that an amorphous interlayer (IL) containing nitrogen played an important role in the alleviation. For comparison, the properties of Ti/Ge contacts were also studied. Based on these results, the IL structure that induced the FLP alleviation was clearly shown and a model was proposed to explain the FLP alleviation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.