Abstract
Ghost holography has attracted notable applied interest in the modern quantitative imaging applications with the futuristic features of complex field recovery in the diversified imaging scenarios. However, the utilization of digital holography in ghost frame works introduces space bandwidth or time bandwidth restrictions in the implementation of the technique in applied domains. Here, we propose and demonstrate a quantitative ghost phase imaging approach with holographic ghost diffraction scheme in combination with the phase-shifting technique. The approach makes use of an off-axis holography system by superposing the ghost diffraction fields with a reference random field generated from an independent diffuser. In addition, the technique utilizes the high-speed response of a spatial light modulator to introduce a fast temporal phase shifting to one of the ghost-diffraction fields that views the object, which practically results in the enhancement of the effective bandwidth in the frequency domain by suppressing redundant terms. The applicability of the technique is experimentally validated by demonstrating the quantitative phase imaging of various abrupt and continuous phase samples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have