Abstract

Wide-coverage near infrared (NIR) phosphor-converted LEDs possess promising potential for practical applications, but little is developed towards the efficient and wide-coverage NIR phosphors. Here, we report the single-component lanthanide (Ln3+ ) ions doped Cs2 M(In0.95 Sb0.05 )Cl6 (M=alkali metal) nanocrystals (NCs), exhibiting emission from 850 to 1650 nm with high photoluminescence quantum yield of 20.3 %, which is accomplished by shaping the multiple metal halide octahedra of double perovskite via the simple alkali metal substitution. From Judd-Ofelt theoretical calculation and spectroscopic investigations, the shaping of metal halide octahedra in Cs2 M(In1-x Sbx )Cl6 NCs can break the forbidden of f-f transition of Ln3+ , thus increasing their radiative transition rates and simultaneously boosting the energy transfer efficiency from host to Ln3+ . Finally, the wide-coverage NIR LEDs based on Sm3+ , Nd3+ , Er3+ -tridoped Cs2 K0.5 Rb0.5 (In0.95 Sb0.05 )Cl6 NCs are fabricated and employed in the multiplex gas sensing and night-vision application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.