Abstract

The quest for efficient and heat-resistant near-infrared (NIR) phosphors to create advanced smart NIR lighting sources continues to pose a significant challenge. This study introduces a new fluoride phosphor, Cr3+-doped Cs2NaScF6, wherein the Cs2NaScF6 host provides a weak crystal field suitable for Cr3+ doping. This arrangement allows the production of a broad NIR emission peaking at 797 nm, coupled with a notable internal quantum efficiency of 90.8 % when excited by 446 nm blue light. Meanwhile, due to the relatively mild electron-phonon coupling effect and a high activation energy within this phosphor, the overall NIR emission intensity at 150 °C sustains 81.8 % of its level at room temperature. This highlights exceptional thermal stability in photoluminescence performance. Combining the Cs2NaScF6:Cr3+ phosphor with a commercially available blue InGaN chip to construct a NIR light-emitting diode (LED) device, which exhibits efficient and stable NIR emission, making it suitable for non-destructive testing applications. These findings affirm that the Cs2NaScF6:Cr3+ phosphor can function as a promising candidate to fabricate high-performance device for NIR spectroscopy application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.