Abstract

Few micron-thick one-dimensional optical superlattices were designed and grown, in which an optimized choice of external dielectric layers allows the formation of a wide and high transmission miniband of coupled cavity states. In such structures a reduction in light group velocity and minimal line shape distortion of propagating optical signal was observed. Group velocity reduction by a factor of 5, obtained both from phase (white-light interferometry) and from time-resolved measurements, is in reasonably good agreement with those calculated through a transfer matrix approach. Time-resolved experiments confirm the minimal line shape distortion for optical pulses of 1.8THz bandwidth at λ=1.5μm wavelength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.