Abstract

Two species of sea urchins (Colobocentrotus atratus and Echinometra mathaei) commonly co-occur on wave-swept intertidal shores in the Indo West Pacific. E. mathaei is a typical spiny urchin and is confined to cavities in the rock. In contrast, C. atratus has an unusual morphology, in which the spines are much reduced, and is found on substrata fully exposed to wave-induced velocities and accelerations. Previous researchers have suggested that spine reduction may therefore be a morphological adaptation to hydrodynamic forces. However, measurement of the drag, lift and accelerational forces on sea urchins show that the adaptive significance of spine reduction is less straightforward than it initially appears. The reduction in drag in C. atratus as compared with that in E. mathaei is to a large extent offset by an increase in lift. Instead, the 'streamlined' morphology of C. atratus seems best adapted to provide a reduction in the force imposed by water acceleration, thereby making it feasible for C. atratus to venture safely into the tumultuous flows of the surf zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.