Abstract

The work loop technique was developed to assess muscle performance during cyclical length changes with phasic activation, simulating the in vivo conditions of many muscles, particularly during locomotion. To estimate muscle function in vivo, the standard approach involves subjecting a muscle to length trajectories and activation timings derived from in vivo measurements, whilst simultaneously measuring force. However, the stimulation paradigm typically used, supramaximal, 'square-wave' stimulation, does not accurately reflect the graded intensity of activation observed in vivo. While the importance of the timing and duration of stimulation within the cycle on estimates of muscle performance has long been established, the importance of graded muscle activation has not been investigated. In this study, we investigated how the activation pattern affects muscle performance by comparing square-wave, supramaximal activation with a graded in vivo activation pattern. First, we used in vivo electromyography-derived activation patterns and fibre strains from the rabbit digastric muscle during mastication and replayed them in situ. Second, we used Hill-type musculoskeletal model-derived activation patterns and fibre strains in a trotting mouse, replayed ex vivo in the soleus (SOL) and extensor digitorum longus (EDL) muscles. In the rabbit digastric muscle, square-wave activation led to an 8-fold higher estimate of net power, compared with the in vivo graded activation pattern. Similarly, in the mouse SOL and EDL, supramaximal, square-wave activation resulted in significantly greater positive and negative muscle work. These findings highlight that realistic interpretations of in vivo muscle function rely upon more accurate representations of muscle activation intensity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.