Abstract

GPU acceleration is a promising approach to speed up query processing of database systems by using low cost graphic processors as coprocessors. Two major trends have emerged in this area: (1) The development of frameworks for scheduling tasks in heterogeneous CPU/GPU platforms, which is mainly in the context of coprocessing for applications and does not consider specifics of database-query processing and optimization. (2) The acceleration of database operations using efficient GPU algorithms, which typically cannot be applied easily on other database systems, because of their analytical-algorithm-specific cost models. One major challenge is how to combine traditional database query processing with GPU coprocessing techniques and efficient database operation scheduling in a GPU-aware query optimizer. In this thesis, we develop a hybrid query processing engine, which extends the traditional physical optimization process to generate hybrid query plans and to perform a cost-based optimization in a way that the advantages of CPUs and GPUs are combined. Furthermore, we aim at a portable solution between different GPU-accelerated database management systems to maximize applicability. Preliminary results indicate great potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.