Abstract

Much effort has been dedicated to boost the development of lead-free perovskite solar cells. However, their performance and stability are still much less competitive to the lead-bearing counterparts. By exploiting a mixed Sn-Ge cation strategy for the development of lead-free perovskites, we perform ab initio electronic structure calculations and quantum dynamics simulations on MASn0.5Ge0.5I3 and compare them to MASnI3. The calculations demonstrate that the hybrid cation strategy can improve simultaneously the perovskite stability and the lifetime of charge carriers. The stability increases due to a larger space of possible structures within the favorable range of the structural parameters, such as the Goldschmidt tolerance and octahedron factors. By exploring the larger structure space, mixed perovskites find stable configurations with lower free energies and better fitting components that exhibit reduced fluctuations around the equilibrium geometries. Charge carriers live longer in mixed perovskites because cation mixing results in an additional and moderate disorder that separates electrons and holes, reducing their interactions while still maintaining efficient band-like charge transport. These general and fundamental principles established by the analysis of the simulation results are useful for the design of advanced materials for solar energy and construction of optoelectronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call