Abstract

Application of the non-adiabatic molecular dynamics (NAMD) approach is limited to studying carrier dynamics in the momentum space, as a supercell is required to sample the phonon excitation and electron-phonon (e-ph) interaction at different momenta in a molecular dynamics simulation. Here we develop an ab initio approach for the real-time charge carrier quantum dynamics in the momentum space (NAMD_k) by directly introducing e-ph coupling into the Hamiltonian based on the harmonic approximation. The NAMD_k approach maintains the zero-point energy and includes memory effects of carrier dynamics. The application of NAMD_k to the hot carrier dynamics in graphene reveals the phonon-specific relaxation mechanism. An energy threshold of 0.2 eV-defined by two optical phonon modes-separates the hot electron relaxation into fast and slow regions with lifetimes of pico- and nanoseconds, respectively. The NAMD_k approach provides an effective tool to understand real-time carrier dynamics in the momentum space for different materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.