Abstract

We investigated how visual working memory (WM) develops with age across the early elementary school period (6-7 years), early adolescence (11-13 years), and early adulthood (18-25 years). The work focuses on changes in two parameters: the number of objects retained at least in part, and the amount of feature-detail remembered for such objects. Some evidence suggests that, while infants can remember up to three objects, much like adults, young children only remember around two objects. This curious, nonmonotonic trajectory might be explained by differences in the level of feature-detail required for successful performance in infant versus child/adult memory paradigms. Here, we examined if changes in one of two parameters (the number of objects, and the amount of detail retained for each object) or both of them together can explain the development of visual WM ability as children grow older. To test it, we varied the amount of feature-detail participants need to retain. In the baseline condition, participants saw an array of objects and simply were to indicate whether an object was present in a probed location or not. This phase begun with a titration procedure to adjust each individual's array size to yield about 80% correct. In other conditions, we tested memory of not only location but also additional features of the objects (color, and sometimes also orientation). Our results suggest that capacity growth across ages is expressed by both improved location-memory (whether there was an object in a location) and feature completeness of object representations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call