Abstract
The lateralized ERP N2pc component has been shown to be an effective marker of attentional object selection when elicited in a visual search task, specifically reflecting the selection of a target item among distractors. Moreover, when targets are known in advance, the visual search process is guided by representations of target features held in working memory at the time of search, thus guiding attention to objects with target-matching features. Previous studies have shown that manipulating working memory availability via concurrent tasks or within task manipulations influences visual search performance and the N2pc. Other studies have indicated that visual (non-spatial) vs. spatial working memory manipulations have differential contributions to visual search. To investigate this the current study assesses participants' visual and spatial working memory ability independent of the visual search task to determine whether such individual differences in working memory affect task performance and the N2pc. Participants (n = 205) completed a visual search task to elicit the N2pc and separate visual working memory (VWM) and spatial working memory (SPWM) assessments. Greater SPWM, but not VWM, ability is correlated with and predicts higher visual search accuracy and greater N2pc amplitudes. Neither VWM nor SPWM was related to N2pc latency. These results provide additional support to prior behavioral and neural visual search findings that spatial WM availability, whether as an ability of the participant's processing system or based on task demands, plays an important role in efficient visual search.
Highlights
Every day we are presented with visual scenes that challenge our attentional system, whether that is finding our cell phone on a cluttered desk or searching for a friend in a crowd
The horizontal electrooculogram (HEOG) was recorded from electrodes placed lateral to the external canthi and the vertical electrooculogram (VEOG) was recorded from an electrode placed below the right eye (Fp2 was used in combination with this electrode to create a VEOG for analysis as a difference in voltage between upper and lower eye locations during offline pre-processing)
In this study we investigated whether individual differences in visual and spatial working memory abilities differentially influence visual search processes as evidenced by task performance and the N2pc
Summary
Every day we are presented with visual scenes that challenge our attentional system, whether that is finding our cell phone on a cluttered desk or searching for a friend in a crowd. Selecting out relevant information during a visual search requires identifying objects as well as resolving conflicts between competing objects using selective attention and working memory. In the context of visual search, selective attention has often been examined through the N2 posterior contralateral component, or the N2pc. The N2pc has been shown to be an effective electrophysiological marker of attentional object selection when presented with a visual search task, reflecting selection of a target item among distractors (Luck and Hillyard, 1994a,b; Eimer et al, 2011).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.