Abstract
The combination of optical-Kerr-effect (OKE) spectroscopy and molecular dynamics simulations has provided us with a newfound ability to delve into the librational dynamics of liquids, revealing, in the process, some surprising commonalities among aromatic liquids. Benzene and biphenyl, for example, have remarkably similar OKE spectra despite marked differences in their shapes, sizes, and moments of inertia--and even more chemically distinct aromatics tend to have noticeable similarities in their spectra. We explore this universality by using a molecular dynamics simulation to investigate the librational dynamics of molten biphenyl and to predict its OKE spectrum, comparing the results with our previous calculations for liquid benzene. We suggest that the impressive level of quantitative agreement between these two liquids is largely a reflection of the fact that librations in these and other aromatic liquids act as torsional oscillations with oscillator frequencies selected from the liquid's librational bands. Since these bands are centered about the librational Einstein frequencies, the quantitative similarities between the liquids are essentially reflections of the near identities of their Einstein frequencies. Why then are the Einstein frequencies themselves so insensitive to molecular details? We show that, for nearly planar molecules, mean-square torques and moments of inertia tend to scale with molecular dimensions in much the same way. We demonstrate that this near cancellation provides both a quantitative explanation of the close relationship between benzene and biphenyl and a more general perspective on the similarities seen in the ultrafast dynamics of aromatic liquids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.