Abstract
The collective polarizability anisotropy dynamics in a set of three aromatic liquids, benzene (Bz), hexafluorobenzene (HFB), and 1,3,5-trifluorobenzene (TFB), has been studied by molecular dynamics simulation. These liquids have very similar shapes, but different electrostatic interactions due to opposite polarities of C-H and C-F bonds, giving rise to different local intermolecular structures in the liquid phase. We have investigated how these structural arrangements affect polarizability anisotropy dynamics observed in optical Kerr-effect (OKE) spectroscopy. We have modeled the interaction-induced polarizability with the first-order dipole-induced dipole approximation, with the molecular polarizability distributed over the carbon sites. Local contributions to the librational OKE spectrum were computed separately for molecules participating in parallel or perpendicular relative orientations within the first coordination shell. We found that the relative locations of parallel and perpendicular librational bands of the OKE spectra are closely related to the corresponding pair energy distributions of the closest four neighbors of a given molecule, corresponding to a model of a harmonic oscillator in a cage of nearest neighbors. This model predicts higher librational frequencies for more attractive intermolecular interactions, which in all three liquids correspond to parallel local arrangements. On the diffusive orientational time scale, all three liquids exhibit slower relaxation of molecules in parallel arrangements, although the difference in relaxation rates is substantial only in TFB, which has the strongest tendency toward parallel stacking. The analysis of the collective polarizability relaxation was performed using two different approaches, the projection scheme (J. Chem. Phys. 1980, 72, 2801) and the theory developed by Steele (Mol. Phys. 1987, 61, 1031) for the second time derivatives applied to collective time correlations. Both approaches allow the decomposition of the OKE response into contributions from orientational relaxation and other dynamical processes. We find that they lead to different predictions on how the response depends on collective reorientation and processes arising from fluctuations in the interaction-induced polarizability. We discuss the reasons for these differences and the advantages and disadvantages of the two analysis schemes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have