Abstract

Listeria monocytogenes is one of the most dangerous food-borne pathogens and is responsible for human listeriosis, a severe disease with a high mortality rate, especially among the elderly, pregnant women and newborns. Therefore, this bacterium has an important impact on food safety and public health. It is able to survive and even grow in a temperature range from -0.4°C to 45°C, a broad pH range from 4.6 to 9.5 and at a relatively low water activity (aW < 0.90), and tolerates salt content up to 20%. It is also resistant to ultraviolet light, biocides and heavy metals and forms biofilm structures on a variety of surfaces in food-production environments. These features make it difficult to remove and allow it to persist for a long time, increasing the risk of contamination of food-production facilities and ultimately of food. In the present review, the key mechanisms of the pathogen's survival and stress adaptation have been presented. This information may grant better understanding of bacterial adaptation to food environmental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.