Abstract

Dynamic 11C-PiB PET imaging with kinetic analysis has been performed for accurate quantification of amyloid binding in patients with Alzheimer's disease (AD). In this study, we measured the whole-body biodistribution of 11C-PiB in nine subjects. We then evaluated the effect of body activity on quantitative accuracy of brain 11C-PiB three-dimensional (3D) dynamic PET. Based on clinical biodistribution data, we conducted phantom experiments to estimate the effect of body activity on quantification of the brain 3D dynamic 11C-PiB PET data and the error introduced by body activity using six different PET camera models. One of the PET cameras was used to acquire 11C-PiB brain 3D dynamic PET data on a patient with AD. We calculated the distribution volume ratio (DVR) in two kinetic methods using both the original human time-activity-curve (TAC) data and the TAC corrected for the error caused by body activity. In the early phase, both healthy subjects and patients with AD showed a biodistribution of 11C-PiB that reflected regional blood flow. In the simulated early phase of the phantom experiments, activity outside the field of view led to a maximum 6.0% overestimation of brain activity in the vertex region. Conversely, the effect of body activity on the DVR estimate was small (≤1.2%), probably because the tested kinetic methods did not rely heavily on early phase data. These results indicate that the effect of body activity on brain 11C-PiB PET quantification is generally small and that it depends on the method of kinetic analysis, the region of interest, and the PET camera model used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call