Abstract
Linezolid is an oxazolidinone antibiotic commonly used to treat serious infections caused by vancomycin-resistant enterococcus. Recently, low-level linezolid resistant Enterococcus faecalis strains have emerged worldwide, but the resistant mechanisms remain undefined. Whole-transcriptome profiling was performed on an E. faecalis strain P10748 with low-level linezolid resistance in comparison with a linezolid-susceptible strain 3138 and the standard control strain ATCC29212. The functions of differentially expressed genes (DEGs) were predicted, with some DEGs potentially involved in drug resistance were validated by PCR and quantitative PCR (qPCR). RNA-Seq on three E. faecalis strains generated 1920 unigenes, with 98% of them assigned to various function groups. A total of 150 DEGs were identified in the linezolid resistant strain P10748 compared to the linezolid susceptible strains 3138 and ATCC29212. Functional analysis indicated a significant transcriptomic shift to membrane transportation and biofilm formation in strain P10748, with three significantly up-regulated DEGs predicted to be associated with drug resistance through active efflux pumps and biofilm formation. The existence of these three DEGs was further confirmed by PCR and qPCR. The significant upregulation of genes associated with efflux pumps and biofilm formation in the linezolid resistant strain suggests their roles in low-level resistance to linezolid in E. faecalis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.