Abstract

Whole seeds of Bauhinia variegata L. (Fabaceae) were utilized as a biological reducer to transform benzaldehyde into benzyl alcohol. The effects of some variables such as temperature, the load of substrate and co-solvent, were established to optimize the reductive process. Utilizing the optimal reaction conditions, a laboratory-scale reaction (final concentration of the substrate: 21.2 mM) was performed to obtain benzyl alcohol (conversion: 95%; isolated yield: 49%; productivity: 1.11 g L−1 or 0.046 g L−1h−1 of benzyl alcohol). In addition, using these optimal conditions, fourteen substituted benzaldehydes were reduced, with a conversion achieved to their corresponding benzyl alcohols ranging from 62% to >99% (isolated yields from 7% to 70%). Moreover, useful building blocks by the synthesis of the drugs and important commercial products were also obtained. The scope, limitations and advantages of this new biocatalytic synthetic method are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.