Abstract

Cardiac electrical activities are varying in both space and time. Human heart consists of a fractal network of muscle cells, Purkinje fibers, arteries and veins. Whole-heart modeling of electrical wave conduction and propagation involves a greater level of complexity. Our previous work developed a computer model of the anatomically realistic heart and simulated the electrical conduction with the use of cellular automata. However, simplistic assumptions and rules limit its ability to provide an accurate approximation of real-world dynamics on the complex heart surface, due to sensitive dependence of nonlinear dynamical systems on initial conditions. In this paper, we propose new reaction-diffusion methods and pattern recognition tools to simulate and model spatiotemporal dynamics of electrical wave conduction and propagation on the complex heart surface, which include (i) whole heart model; (ii) 2D isometric graphing of 3D heart geometry; (iii) reaction-diffusion modeling of electrical waves in 2D graph, and (iv) spatiotemporal pattern recognition. Experimental results show that the proposed numerical solution has strong potentials to model the space-time dynamics of electrical wave conduction in the whole heart, thereby achieving a better understanding of disease-altered cardiac mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call