Abstract

Corn planting is often associated with serious atrazine pollution and excessive corn straw amounts, causing severe threats to environmental and ecological security, as well as to green agricultural development. In this context, a Paenarthrobacter sp. KN0901 strain was applied to simultaneously remove atrazine and straw at low temperatures. The results of whole genome sequencing indicated that KN0901 encoded over nine straw biodegradation-related enzymes. In addition, 100 % and 27.3 % of atrazine and straw were simultaneously degraded by KN0901 following an incubation period of seven days at 15 ºC and 180 rpm in darkness. The KN0901 strain maintained high atrazine and straw biodegradation rates under temperature and pH ranges of 4–25 ºC and 5–9, respectively. The simultaneous atrazine and corn straw additions improved the microbial growth and biodegradation rates by increasing the functional gene expression level, cell viability, inner membrane permeability, and extracellular polymeric substance contents of KN0901. The hydroponic experiment results demonstrated the capability of the KN0901 strain to mitigate the toxicity of atrazine to soybeans in four days under the presence of corn straw. The present study provides a new perspective on the development of bioremediation approaches and their application to restore atrazine-polluted cornfields with large straw quantities, particularly in cold areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call