Abstract
As the fundamental resource in nuclear energy, uranium is a sword of two sides, due to its radioactive character that could cause severe impact to the environment and living creatures once released by accident. However, limited by the passive ion transport, the currently available uranium adsorbents still suffer from low adsorption kinetics and capacity. Here, we report a self-driven modular micro-reactor composed of magnetizable ion-exchange resin and adsorbents that can be used to dynamically remove uranium from nonmarine waters. Because of the long-range pH gradient and phoretic flow established by the recyclable ion-exchange resin, the micro-reactor shows a fast uranium adsorption rate and reaches a uranium extraction capacity of 629.3mgg-1 within 10min in 30 ppm uranium solution, as well as good recyclability in repeated use. Numerical simulation result confirms that the phoretic flow and electric field accelerate uranium transport to the adsorbent. Our work provides a new solution for the removal of radioactive uranium with high efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.