Abstract
BackgroundResistance to 3rd-generation cephalosporins in Escherichia coli is mostly mediated by extended-spectrum beta-lactamases (ESBLs) or AmpC beta-lactamases. Besides overexpression of the species-specific chromosomal ampC gene, acquisition of plasmid-encoded ampC genes, e.g. blaCMY-2, has been described worldwide in E. coli from humans and animals. To investigate a possible transmission of blaCMY-2 along the food production chain, we conducted a next-generation sequencing (NGS)-based analysis of 164 CMY-2-producing E. coli isolates from humans, livestock animals and foodstuff from Germany.ResultsThe data of the 164 sequenced isolates revealed 59 different sequence types (STs); the most prevalent ones were ST38 (n = 19), ST131 (n = 16) and ST117 (n = 13). Two STs were present in all reservoirs: ST131 (human n = 8; food n = 2; animal n = 6) and ST38 (human n = 3; animal n = 9; food n = 7). All but one CMY-2-producing ST131 isolates belonged to the clade B (fimH22) that differed substantially from the worldwide dominant CTX-M-15-producing clonal lineage ST131-O25b clade C (fimH30). Plasmid replicon types IncI1 (n = 61) and IncK (n = 72) were identified for the majority of blaCMY-2-carrying plasmids. Plasmid sequence comparisons showed a remarkable sequence identity, especially for IncK plasmids. Associations of replicon types and distinct STs were shown for IncK and ST57, ST429 and ST38 as well as for IncI1 and ST58. Additional β-lactamase genes (blaTEM, blaCTX-M, blaOXA, blaSHV) were detected in 50% of the isolates, and twelve E. coli from chicken and retail chicken meat carried the colistin resistance gene mcr-1.ConclusionWe found isolates of distinct E. coli clonal lineages (ST131 and ST38) in all three reservoirs. However, a direct clonal relationship of isolates from food animals and humans was only noticeable for a few cases. The CMY-2-producing E. coli-ST131 represents a clonal lineage different from the CTX-M-15-producing ST131-O25b cluster. Apart from the ST-driven spread, plasmid-mediated spread, especially via IncI1 and IncK plasmids, likely plays an important role for emergence and transmission of blaCMY-2 between animals and humans.
Highlights
Resistance to 3rd-generation cephalosporins in Escherichia coli is mostly mediated by extended-spectrum beta-lactamases (ESBLs) or AmpC beta-lactamases
Antibiotic susceptibilities, resistance and virulence genes All 164 CMY-2-producing E. coli isolates of our study were resistant to ampicillin, cefotaxime, ceftazidime and cefoxitin but remained susceptible to imipenem and meropenem with one exception
The whole genome sequence analysis of 164 CMY-2-producing E. coli isolated from human patients, livestock animals and meat products in Germany revealed a high diversity of sequence type (ST) across all sources; most frequent types were ST38, ST131 and ST117
Summary
Resistance to 3rd-generation cephalosporins in Escherichia coli is mostly mediated by extended-spectrum beta-lactamases (ESBLs) or AmpC beta-lactamases. The production of extended-spectrum β-lactamases (ESBLs) is the worldwide most important mechanism of resistance to 3rd-generation cephalosporins in Escherichia coli. Recent studies reported the finding of blaCMY-2 on similar IncK or IncI1 plasmids in unrelated E. coli isolates from poultry and other livestock animals, meat products, humans and companion animals [7,8,9,10]. This finding points towards a zoonotic potential for the dissemination of this resistance determinant via the food production chain. CMY-2 production has been hitherto rarely described for ST131 isolates [7, 17]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.