Abstract

BackgroundCotton serves as a primary source of natural fibers crucial for the textile industry. However, environmental elements such as drought have posed challenges to cotton cultivation, resulting in adverse impacts on both production and fiber quality. Improving cotton’s resilience to drought could mitigate yield losses and foster the expansion of cotton farming. Rab7 protein, widely present in organisms, controls the degradation and recycling of cargo, and has a potential role in biotic and abiotic tolerance. However, comprehensive exploration of the Rab7 gene family in Gossypium remains scarce.ResultsHerein, we identified a total of 10, 10, 20, and 20 Rab7 genes through genome-wide analysis in Gossypium arboreum, Gossypium raimondii, Gossypium hirsutum, and Gossypium barbadense, respectively. Collinearity analysis unveiled the pivotal role of whole genome or segmental duplication events in the expansion of GhRab7s. Study of gene architecture, conserved protein motifs, and domains suggested the conservation of structure and function throughout evolution. Exploration of cis-regulatory elements revealed the responsiveness of GhRab7 genes to abiotic stress, corroborated by transcriptome analysis under diverse environmental stresses. Notably, the greatly induced expression of GhRab7B3-A under drought treatment prompted us to investigate its function through virus-induced gene silencing (VIGS) assays. Silencing GhRab7B3-A led to exacerbated dehydration and wilting compared with the control. Additionally, inhibition of stomatal closure, antioxidant enzyme activities and expression patterns of genes responsive to abiotic stress were observed in GhRab7B3-A silenced plants.ConclusionsThis study sheds light on Rab7 members in cotton, identifies a gene linked to drought stress, and paves the way for additional investigation of Rab7 genes associated with drought stress tolerance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.