Abstract
ObjectiveWe performed single-variant and gene-based association analyses of plasma amyloid-β (aβ) concentrations using whole exome sequence from 1,414 African and European Americans. Our goal was to identify genes that influence plasma aβ42 concentrations and aβ42:aβ40 ratios in late middle age (mean = 59 years), old age (mean = 77 years), or change over time (mean = 18 years).MethodsPlasma aβ measures were linearly regressed onto age, gender, APOE ε4 carrier status, and time elapsed between visits (fold-changes only) separately by race. Following inverse normal transformation of the residuals, seqMeta was used to conduct race-specific single-variant and gene-based association tests while adjusting for population structure. Linear regression models were fit on autosomal variants with minor allele frequencies (MAF)≥1%. T5 burden and Sequence Kernel Association (SKAT) gene-based tests assessed functional variants with MAF≤5%. Cross-race fixed effects meta-analyses were Bonferroni-corrected for the number of variants or genes tested.ResultsSeven genes were associated with aβ in late middle age or change over time; no associations were identified in old age. Single variants in KLKB1 (rs3733402; p = 4.33x10-10) and F12 (rs1801020; p = 3.89x10-8) were significantly associated with midlife aβ42 levels through cross-race meta-analysis; the KLKB1 variant replicated internally using 1,014 additional participants with exome chip. ITPRIP, PLIN2, and TSPAN18 were associated with the midlife aβ42:aβ40 ratio via the T5 test; TSPAN18 was significant via the cross-race meta-analysis, whereas ITPRIP and PLIN2 were European American-specific. NCOA1 and NT5C3B were associated with the midlife aβ42:aβ40 ratio and the fold-change in aβ42, respectively, via SKAT in African Americans. No associations replicated externally (N = 725).ConclusionWe discovered age-dependent genetic effects, established associations between vascular-related genes (KLKB1, F12, PLIN2) and midlife plasma aβ levels, and identified a plausible Alzheimer’s Disease candidate gene (ITPRIP) influencing cell death. Plasma aβ concentrations may have dynamic biological determinants across the lifespan; plasma aβ study designs or analyses must consider age.
Highlights
Alzheimer’s disease (AD) is a major public health burden, afflicting 5.1 million Americans aged 65 or older; the number of cases is expected to triple by 2050, costing the nation $1.1 trillion [1]
ITPRIP, PLIN2, and TSPAN18 were associated with the midlife aβ42:aβ40 ratio via the T5 test; TSPAN18 was significant via the cross-race meta-analysis, whereas ITPRIP and PLIN2 were European American-specific
NCOA1 and NT5C3B were associated with the midlife aβ42:aβ40 ratio and the fold-change in aβ42, respectively, via Sequence Kernel Association (SKAT) in African Americans
Summary
Alzheimer’s disease (AD) is a major public health burden, afflicting 5.1 million Americans aged 65 or older; the number of cases is expected to triple by 2050, costing the nation $1.1 trillion [1]. Plasma aβ concentrations reflect a wide array of tissue sources [26] and age-related health conditions, such as subcortical white matter lesions, cerebral microbleeds, hypertension, diabetes, infarcts, ischemic heart disease, and chronic kidney disease [14, 27, 28], a few of which are themselves associated with AD. This fosters ambiguity in the pathophysiological interpretation (AD or non-AD) of any findings
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have