Abstract

BackgroundTo increase the effectiveness of insecticide-treated nets (ITN) in areas of high resistance, new long-lasting insecticidal nets (LLINs) called new-generation nets have been developed. These nets are treated with the piperonyl butoxide (PBO) synergist which inhibit the action of detoxification enzymes. The effectiveness of the new-generation nets has been proven in some studies, but their specific effect on mosquitoes carrying detoxification enzymes and those carrying both detoxification enzymes and the knock-down resistance gene in Benin is not well known. Thus, the objective of this study is to evaluate the efficacy of LLINs treated with PBO on multi-resistant Anopheles gambiae s.l.MethodsThe study occurred in seven cities in Benin, Abomey, Cotonou, Porto-Novo, Zangnanado, Parakou, Malanville and Tanguiéta, and included ten locations selected on a north–south transect. Mosquito larvae were collected from these sites, and adult females from these larvae were exposed to single-pyrethroid-treated nets (LifeNet, PermaNet 2.0, Olyset Net) and bi-treated nets (PermaNet 3.0 and Olyset Plus) based on their level of resistance and using WHO cone tests following WHO guidelines.ResultsThe different LLINs showed 100% mortality of the susceptible laboratory strain Kisumu and the resistant strain Ace-1R Kisumu. However, with the resistant laboratory strain kdr-Kisumu, mortality was low (16–32%) for all LLINs except PermaNet 3.0 (82.9%). The mortality of local strains carrying only the kdr mechanism varied from 0 to 47% for the single-pyrethroid-treated LLINs and 9 to 86% for bi-treated LLINs. With local strains carrying several mechanisms of resistance (kdr + detoxification enzymes), the observed mortality with different LLINs was also low except for PermaNet 3.0, which induced significantly higher mortality, usually greater than 75% (p < 0.001), with multi-resistant strains. The inhibition of the mortalities induced by the LLINs (11–96%) on multi-resistant field populations was similar to the inhibition observed with the laboratory strain carrying only the knock-down resistance mechanism (kdr-Kisumu) (p > 0.05).ConclusionThis study showed that the new-generation LLINs treated with pyrethroids and PBO showed better efficacy compared to conventional LLINs. Although the addition of PBO significantly increased the mortality of mosquitoes, the significant role of the kdr resistance gene in the low efficacy of LLINs calls for LLIN technology innovation that specifically targets this mechanism.

Highlights

  • To increase the effectiveness of insecticide-treated nets (ITN) in areas of high resistance, new longlasting insecticidal nets (LLINs) called new-generation nets have been developed

  • The two types of long-lasting insecticidal nets (LLINs) included conventional LLINs only treated with pyrethroids (Olyset Net, LifeNet, and PermaNet 2.0) and a second type of new-generation LLIN treated with pyrethroids and piperonyl butoxide (PBO), which inhibits the action of enzymes, oxidases

  • This study is one of the first conducted in Benin to compare the response of local malaria vectors in Benin to several LLINs recommended by the World Health Organization (WHO)

Read more

Summary

Introduction

To increase the effectiveness of insecticide-treated nets (ITN) in areas of high resistance, new longlasting insecticidal nets (LLINs) called new-generation nets have been developed. It affects onefifth of the world population This proportion has decreased significantly by 37% between 2000 and 2015 due to the effect of malaria prevention and treatment methods, including long-lasting insecticidal nets (LLINs), indoor residual spraying of residual insecticides (IRS), chemo-prevention for pregnant women and children, and therapeutic treatment with artemisinin-based combinations. Among these prevention methods, LLINs have emerged in recent years as a privileged tool to prevent malaria. Efforts are being made to increase accessibility for populations, especially pregnant women and children under five, who are vulnerable to malaria, a major cause of perinatal mortality, low birth weight and maternal anaemia [1]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call