Abstract
We fabricate white phosphorescent organic light-emitting diodes (PHOLEDs) with three dopants and double emissive layer (EML) to achieve color stability. The white PHOLEDs use FIrpic dopant for blue EML (B-EML), and Ir(ppy)3:Ir(piq)3 dopants for green:red EML (GR-EML) with N,N.'-dicarbazolyl-3, 5-benzene (mCP) as host material. Thicknesses of B-EML and GR-EML are adjusted to form a narrow recombination zone at two EML's interface and charge trapping happens in EML according to wide highest occupied molecular orbital and/or lowest unoccupied molecular orbital energy band gap of mCP and smaller energy band gap of dopants. The total thickness of both EMLs is fixed at 30 nm in the device structure of ITO (150 nm)/MoO3 (2 nm)/N,N'-diphenyl-N,N'-bis(l-naphthyl-phenyl)-(l,l'-biphenyl)-4, 4'-diamine (70 nm)/mCP:Firpic-8.0% (12 nm)/mCP:Ir(ppy)3-3.0%:Ir(piq)3-1.5% (18 nm)/2',2',2''-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (30 nm)/8-hydroxyquinolinolato-lithium (2 nm)/Al (120 nm). White PHOLED shows 18.25 cd/A of luminous efficiency and white color coordinates of (0.358 and 0.378) at 5000 cd/m2 and color stability with slight CIEXY change of (0.028 and 0.002) as increasing luminance from 1000 to 5000 cd/m2.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have