Abstract
Single-component white light emitters are particularly attractive for fabricating economical solid-state devices for display and lighting. Herein, an efficient white light with photoluminescence quantum yields approaching 98% has been obtained in Mn2+ and Pb2+ co-doped Cs7Cd3Br13 crystals. The quantified bonding and nonbonding characters calculated by the crystal orbital Hamilton population analysis demonstrate that the Mn2+ and Pb2+ occupy preferentially in the [CdBr4]2– tetrahedrons rather than the [CdBr6]4– octahedrons in Cs7Cd3Br13. According to the PL spectral characteristic and the theoretical results, the broadband white light emission from Cs7Cd3Br13:Pb2+,Mn2+ crystals is ascribed to the multiple PL origins, i.e., the first self-trapped exciton (STE1) from the intrinsic trapping states of host lattice Cs7Cd3Br13, the d–d transition of Mn2+, and the second self-trapped exciton (STE2) induced by the introduction of Pb2+, respectively. The results calculated by density functional theory reveal that the incorporation of Mn2+ and Pb2+ has significantly improved the thermodynamic stability of the Cs7Cd3Br13 structure with lower defect formation energies, which is verified by the experimental observation in the temperature-dependent PL spectra of the emitting crystals. The findings here provide a new perspective for a single-component white light via creating multiple PL centers in a single matrix as well as help in the elucidation of the preferential site occupancy mechanism of the dopants in different symmetrical units.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have