Abstract

AbstractThe inclusion of a detailed treatment of solidification processes in the cooling theory of carbon–oxygen white dwarfs is of crucial importance for the determination of their luminosity function. Carbon–oxygen separation at crystallization yields delays larger than 2 Gyr to cool down to luminosities corresponding to the observed cut–off. This leads to estimates of the age of the galactic disk 1.5 to 2 Gyr older than the ones obtained in previous studies (about 9 Gyr). Furthermore, the presence of minor chemical species, in particular 22Ne, alters significantly the crystallization process, and produces extra delays of 2 to 3 gigayears. However, the detailed computation of the theoretical white dwarf luminosity function, taking into account a reasonable model of galactic chemical evolution, and including the effect of these species, shows that the location of the cut–off, and then the estimated age of the disk, is not modified significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call