Abstract
BackgroundExtracellular vesicles, have gained increasing attention for their application in drug delivery. Here, we developed a novel method for radiolabeling WBCs with 99mTc using RBC-derived extracellular vesicles -mimetics (EVMs), and monitored in vivo inflammation tracking of 99mTc-WBC using gamma camera in acute inflammation mouse model. MethodsEngineered EVMs from RBCs were produced by a one-step extrusion method. RBC-EVMs were analyzed by NTA and TEM. Cells were labeled with 99mTc by using 99mTc-RBC-EVMs. Inflammation mice model was prepared and confirmed by 18F-FDG PET/CT. 99mTc-WBCs were injected in mice, and their biodistribution was analyzed by gamma camera. FindingThe radiochemical purity of 99mTc-RBC-EVMs was 100%. The 99mTc-labeling did't affect the size and morphology. The 99mTc in the cytoplasm of RBC-EVMs was successfully confirmed by high angle annular dark field STEM (scanning transmission electron microscope). Cells were successfully labeled with 99mTc using 99mTc-RBC-EVMs, and the counts per minute was increased in dose- and time-dependent manners. The 18F-FDG PET/CT images confirmed establishment of acute inflammation (left mouse foot). 99mTc-WBCs showed higher uptake in the inflamed foot than non-inflamed foot. InterpretationThis novel method for radiolabeling WBCs using RBC-EVMs. 99mTc labeling may be a feasible method to monitor the in vivo biodistribution of cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.