Abstract
Ethnopharmacological relevanceArtemisia scoparia Waldst. & Kitam (A. scoparia) is a perennial herbal plant that is widely used as a folk remedy in Asian countries. Several studies have demonstrated that A. scoparia has various physiological effects, including anti-inflammation, anti-hypertension, anti-obesity, anti-hepatotoxicity, and anti-oxidant effects.Aim of the study: The objective of the present study was to examine the anti-inflammatory effects of water extract of A. scoparia (WAS). Materials and methodsMurine bone marrow-derived macrophages (BMDMs), human monocyte THP-1 and murine fibroblast 3T3-L1 cells were used for the in vitro experiments. Cell viability and cytokine production were determined by the MTT assay and ELISA, respectively. RT-PCR was performed to determine iNOS gene expression and the Griess reaction was used to measure nitrite levels. iNOS protein expression, activation of NF-κB and MAPKs, and cleavage of caspase-1 and IL-1β were determined by Western blot analysis. A carrageenan-induced mouse model of acute inflammation was used in the in vivo experiments. ResultsPretreatment with WAS concentration-dependently suppressed gene expression and IL-6, TNF-α, CXCL1 and iNOS protein levels in BMDMs stimulated with LPS. In addition, pretreatment with WAS inhibited LPS-induced production of IL-6 and TNF-α in THP-1 cells and CXCL1 in 3T3-L1. Furthermore, LPS induced phosphorylation of p65 in BMDMs, and this induction was dramatically suppressed by WAS pretreatment. We further investigated whether WAS regulates activation of the NLRP3 inflammasome, which is known to be essential for IL-1β processing. WAS inhibited the production of IL-1β, but not IL-6, in response to adenosine triphosphate (ATP) and monosodium uric acid (MSU) crystals in LPS-primed BMDMs. Cleavage of caspase-1 and IL-1β was also reduced by WAS. We finally evaluated the in vivo anti-inflammatory effects of WAS in a mouse model of carrageenan-induced acute inflammation. Subcutaneous administration of WAS reduced production of the inflammatory cytokines IL-6, TNF-α, CXCL1, and IL-1β. Recruitment of immune cells, mostly neutrophils, was also reduced by administration of WAS. Infiltration of inflammatory cells and edema in the submucosa of air pouch tissues were markedly improved in the WAS-treated groups. ConclusionsOur results indicate that WAS possesses potent anti-inflammatory properties. These findings suggest that A. scoparia is a candidate functional food targeting several inflammatory diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.