Abstract

The dielectric tensor, modified plasma dispersion function and dispersion relation for Whistler mode instability in an infinite magnetoplasma are obtained in the case of cold plasma injection to background hot anisotropic generalized bi-Lorentzian (κ) plasma in the presence of external perpendicular a.c. electric field. The method of characteristics solutions using perturbed and unperturbed particle trajectories have been used to determine the perturbed distribution function. Integrals and modified plasma dispersion function Zκ *(ξ ) are reduced in power series expansion form. Numerical methods using computer technique have been used to obtained temporal growth rate for magnetospheric plasma at geostationary height. The bi-Lorentzian (κ) plasma is reducible to various forms of distribution function by changing the spectral index κ. The results of bi-Lorentzian (κ) plasma are compared with those of bi-Maxwellian plasma. It has been found that the addition of cold plasma injection gives different frequency spectra. The a.c. frequency of moderate amplitude increases the growth rate and instability in K space to lower range. Growth rate maximum is not affected by a.c. frequencies. However, it shifts the maximum to lower K space in both cases, rather than on the variation of the magnitude. Thus a physical situation like this may explain emission of various high frequency whistler emissions by cold plasma injection. The potential application of controlled plasma experiments in the laboratory and for planetary atmosphere are indicated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.