Abstract
Whispering-gallery modes (WGMs), confining the resonant photons in nanoscale volumes, have been known to exhibit high-quality factor and sensitivity for electromagnetic waves in the field of nanophotonics. Here, we numerically demonstrate that a metasurface, which consists of periodic arrays with concentrically hybrid rectangular-slot (RS) and circular-ring-aperture (CRA) unit cells, supports polarization-dependent plasmonic sensing and switching in the visible and near-infrared regions. In particular, it is shown that the magnetic plasmon-induced transparency (PIT) effect arises from the coupling between a wideband WGM resonance and a narrowband magnetic dipole resonance mode in the hybrid metasurface. It is of great interest to find that the resonance mode broadening and mode shift sensing can be realized by varying the polarization angle of incident light and the length of the RS structure, respectively. Moreover, a novel and easy-fabricated plasmonic switching can be implemented in the visible and near-infrared regions. By changing the inner radius of the CRA structure, we reveal that the operating wavelength of the plasmonic switching can be extended to the telecom O- or E-band with an optimal ON/OFF ratio being 18.35 dB. Our results provide a path toward designing compact and tunable PIT device and could expand the application range of subwavelength nanostructures to the realm of optical communications and information process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.