Abstract

The aim of this study was to investigate the optimal threshold for the functional lung (FL) definition of single-photon emission computed tomography (SPECT) lung perfusion imaging. Forty consecutive stage III non-small-cell lung cancer patients underwent SPECT lung perfusion scans and PET/CT scans for treatment planning, and the images were coregistered. Total lung and perfusion lung volumes corresponding to 10, 20, …, 60% of the maximum SPECT count were segmented automatically. The SPECT-weighted mean lung dose (SWMDx%) and the percentage of FL volume receiving more than 20 Gy (Fx%V20) of different thresholds were investigated using SPECT-weighted dose-volume histograms. Receiver-operator characteristic curves were used to identify SWMD and FV20 of different thresholds in predicting the incidence of radiation pneumonitis (RP). Eleven (27.5%) patients developed RP (grades 1, 2, 3, and 4 were 10.0, 7.5, 7.5, and 2.5%, respectively) after treatment. The largest area under the receiver-operator characteristic curve was 0.881 for the ability of SWMD to predict RP with 20% as the threshold and 0.928 for the ability of FV20 with 20% as the threshold. The SWMD20% and FV20 of FL using 20% of the maximum SPECT count as the threshold may be better predictors for the risk of RP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.