Abstract
This article deals with the perception of mobile robotic systems within the framework of interactive perception, and inspired by the sensorimotor contingencies (SMCs) theory. These approaches state that perception arises from the active exploration of an environment. In the SMC theory, it is postulated that information about the structure of space could be recovered from a quasi-uninterpreted sensorimotor flow. In a recent article, the authors have provided a mathematical framework for the construction of a sensorimotor representation of the interaction between the sensors and the body of a naive agent, provided that the sensory inputs come from the agent's own body. An extension of these results, with stimulations coming from an unknown changing environment, is proposed in this article. More precisely, it is demonstrated that, through repeated explorations of its motor configurations, the perceived sensory invariants can be exploited to build a topologically accurate internal representation of the relative poses of the agent's sensors in the physical world. Precise theoretical considerations are provided as well as an experimental framework assessed in simulated but challenging environments.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Cognitive and Developmental Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.