Abstract
Let $R$ be a finite commutative principal ideal ring with unity. In this article, we prove that the zero-divisor graph $\Gamma(R)$ is a divisor graph if and only if $R$ is a local ring or it is a product of two local rings with at least one of them having diameter less than $2$. We also prove that $\Gamma(R)$ is a divisor graph if and only if $\Gamma(R[x])$ is a divisor graph if and only if $\Gamma(R[[x]])$ is a divisor graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.