Abstract
Let [Formula: see text] be the complement of the zero-divisor graph of a finite commutative ring [Formula: see text]. In this paper, we provide the answer of the question (ii) raised by Osba and Alkam in [11] and prove that [Formula: see text] is a divisor graph if [Formula: see text] is a local ring. It is shown that when [Formula: see text] is a product of two local rings, then [Formula: see text] is a divisor graph if one of them is an integral domain. Further, if [Formula: see text], then [Formula: see text] is a divisor graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.